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A new particular solution has been obtained for the approximate system of
equations of motion of a gas, which is close to the Chaplygin system of
equations over a large transonic range of variation of velocity. This
solution can be used for nozzle design.

The Chaplygin system of equations, in canonical form, can be represented
as:
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where ¢ and ¢ are velocity potential and stream function respectively,
VK and s are known functions of the relative velocity A, and
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and 0 is the angle between the velocity vector and the abscissa in the
plane of gas flow (x, y). In the neighborhood of A = 1 we have
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Let us now put system (1) in terms of new independent variables 7, a,
using the formulas
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As a result of some simple transformations we obtain
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or we get one equation for the stream function
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For F = 1, equation (5) has the particular solution ¢y = a, which
corresponds to Fal’kovich’s result [1 ]. It should be mentioned that the
exact function F(A) differs significantly from unity over a wide range of
velocity variation A in the neighborhood of sonic velocity. To get a more
accurate result we will look for some particular solution in the form
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where a is an arbitrary constant. By putting expression (7) into equation
(5) and separating the variables, we obtain
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where n is an arbitrary constant. From this we obtain
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where 4, ¢g» €y are arbitrary constants of integration.
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From the condition that function (9) and its differential coincide at
point n = 0 with the corresponding exact values of function (6), we ob-
tain
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In the figure curve ! represents the exact function (6), curve 2 is
function (9) for condition (10) and A = 0.096. Curve 3 represents the
relation between A and 7. When ¢y = 0, solution (7) represents a sym-
metrical nozzle, and satisfies the well-known condition of the persist-
ence of subsonic flow within the supersonic region at the line of trans-
ition [2].

BIBLIOGRAPHY

1. Fal’'kovich, S,V., K teorii sopla Lavalia (On the theory of the Laval
nozzle). PMM Vol. 22, No. 3, 19486.

2. Kochin, N.E.,and Kibel’, I.A. and Roze, N.V., Teoreticheskaia Gidro-
mekhanika (Theoretical Hydromechanics). Part II, 1948,



