ON PLANE NOZZLE DESIGN

(E RASCGETU PLOSKIEA SOPEL)

PMM Vol.22. No.6, 1958, pp. 839.840

I. M. IUR'EV

(Moscow)
(Received 24 April 1958)

A new particular solution has been obtained for the approximate systen of equations of motion of a gas, which is close to the Chaplygin system of equations over a large transonic range of variation of velocity. This solution can be used for nozzle design.

The Chaplygin system of equations, in canonical form, can be represented as:

$$
\begin{equation*}
\frac{\partial \varphi}{\partial \vartheta}=V \bar{K} \frac{\partial \psi}{\partial s}, \quad \frac{\partial \varphi}{\partial s}=-V \bar{K} \frac{\partial \psi}{\partial \bar{\vartheta}} \tag{1}
\end{equation*}
$$

where ϕ and ψ are velocity potential and stream function respectively, \sqrt{K} and s are known functions of the relative velocity λ, and

$$
\begin{gather*}
V \bar{K}=\sqrt{\frac{1-\lambda^{2}}{\left(1-\lambda^{2} / h^{2}\right)^{2}}} \\
s=\int_{1}^{\lambda} \sqrt{\frac{1-\lambda^{2}}{1-\lambda^{2} / h^{2}}} \frac{d \lambda}{3} \tag{2}\\
\left(h^{2}=\frac{x+1}{x-1}\right)
\end{gather*}
$$

and θ is the angle between the velocity vector and the abscissa in the plane of gas flow (x, y). In the neighborhood of $\lambda=1$ we have

$$
\sqrt{K}=A_{0} s^{1 / 4}, \quad A_{0}=-3^{1 / 3}\left(\frac{x+1}{2}\right)^{\frac{x+2}{3(x-1)}}
$$

Let us now put system (1) in terms of new independent variables η. a, using the formulas

$$
\begin{equation*}
s=-\frac{2}{3} \eta^{\eta / 2}, \quad \theta=-\eta \alpha-\frac{1}{3} \alpha^{8} \tag{3}
\end{equation*}
$$

As a result of some simple transformations we obtain

$$
\begin{equation*}
\frac{\partial \varphi}{\partial \eta}=\left(\frac{2}{3}\right)^{1 / 2} A_{0} F(\eta)\left(\frac{\partial \psi}{\partial \alpha}-\alpha \frac{\partial \psi}{\partial \eta}\right), \quad \frac{\partial \varphi}{\partial \alpha}=\left(\frac{2}{3}\right)^{1 / 3} A_{0} F(\eta)\left(\alpha \frac{\partial \psi}{\partial \alpha}-\left(\eta+\alpha^{2}\right) \frac{\partial \psi}{\partial \eta}\right) \tag{4}
\end{equation*}
$$

or we get one equation for the stream function

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial \alpha^{2}}-2 \alpha \frac{\partial^{2} \psi}{\partial \alpha \partial \eta}+\left(\eta+\alpha^{2}\right) \frac{\partial^{2} \psi}{\partial \eta^{2}}-\frac{F^{\prime}(\eta)}{F(\eta)}\left(\alpha \frac{\partial \psi}{\partial \alpha}-\left(\eta+\alpha^{2}\right) \frac{\partial \psi}{\partial \eta}\right)=0 \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
F(\eta)=\frac{\sqrt{K}}{A_{v} s^{2} / l_{0}} \tag{6}
\end{equation*}
$$

For $F=1$, equation (5) has the particular solution $\psi=a$, which corresponds to Fal'kovich's result [1]. It should be mentioned that the exact function $F(\lambda)$ differs significantly from unity over a wide range of velocity variation λ in the neighborhood of sonic velocity. To get a more accurate result we will look for some particular solution in the form

$$
\begin{equation*}
\psi=f(\alpha)[1+a J(\eta)] \quad\left(J(\eta)=\int_{0}^{\eta} \frac{d \eta}{F(\eta)}\right) \tag{7}
\end{equation*}
$$

where a is an arbitrary constant. By putting expression (7) into equation (5) and separating the variables, we obtain

$$
\begin{equation*}
\frac{f^{\prime \prime}(\alpha)}{a f^{\prime}(\alpha)}=\frac{F^{\prime}(\eta)}{F(\eta)}+\frac{2 a}{F(\eta)\left\lfloor^{1}+a J(\eta)\right\rfloor}=n \tag{8}
\end{equation*}
$$

where n is an arbitrary constant. From this we obtain

$$
\begin{equation*}
F(\eta)=\frac{a}{A n} e^{n \eta}\left(A-1+e^{-n \eta}\right)^{2}, \quad j(\alpha)=c_{0}+c_{1} \int_{0}^{\alpha} e^{1 / 2 n \alpha^{2}} d \alpha \tag{9}
\end{equation*}
$$

where A, c_{0}, c_{1} are arbitrary constants of integration.

From the condition that function (9) and its differential coincide at point $\eta=0$ with the corresponding exact values of function (6), we obtain

$$
\begin{equation*}
a=\frac{n}{A}, \quad n=\frac{A}{A-2} F^{\prime}(0) \tag{10}
\end{equation*}
$$

In the figure curve 1 represents the exact function (6), curve 2 is function (9) for condition (10) and $A=0.096$. Curve 3 represents the relation between λ and η. When $c_{0}=0$, solution (7) represents a symmetrical nozzle, and satisfies the well-known condition of the persistence of subsonic flow within the supersonic region at the line of transition [2].

BIBL IOGRAPHY

1. Fal'kovich, S.V., K teorii sopla Lavalia (On the theory of the Laval nozzle). PMM Vol. 22, No. 3, 1946.
2. Kochin, N.E., and Kibel', I.A. and Roze, N. V., Teoreticheskaia Gidromekhanika (Theoretical Hydromechanics). Part II, 1948.
